

Green Mountain Data Centre

«The greenest data centre in the world»

Knut Molaug

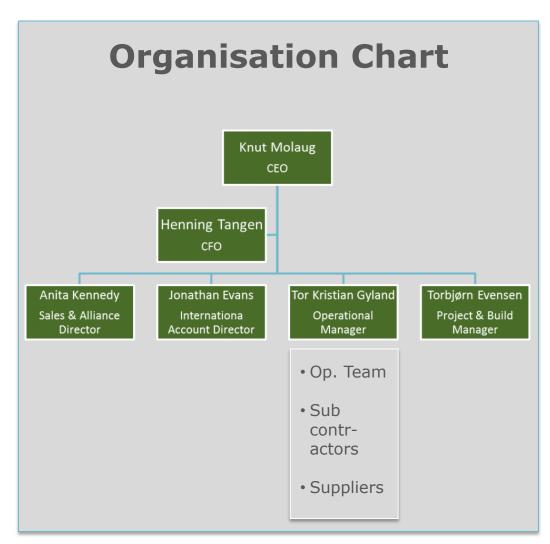
The owner

- Norwegian privately held family office
- Typically long term owner
- Equity base of approx. 10 BNOK
- Investment areas:
 - Property
 - Industry
 - Venture / private equity
 - Opportunistic
 - Portfolio of more liquid assets

www.smedvig.no

An industrial initiative by Smedvig

Organisation


Knut Molaug, CEO

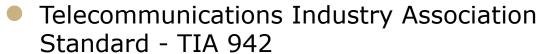
Anita Kennedy, Sales & Alliance Director

Tor Kristian Gyland, Operations Manager

Our DC location

- Former NATO facility
- Proximity city of Stavanger:
 - 30 min from city centre
 - 40 min from airport
 - Enthusiastic municipality
- About Stavanger region:
 - ~300.000
 - Oil industry hub
 - High tech
 - University
 - Growth region

The site seen from the air


- The administration building is seen in the foreground
- Data centre entry is through 100 m long tunnels into the mountain
- 6 separate mountain halls
- Mountain halls are covered by 100–200 m of solid rock
- Adjacent to 140 m deep threshold fjord

General DC design parameters

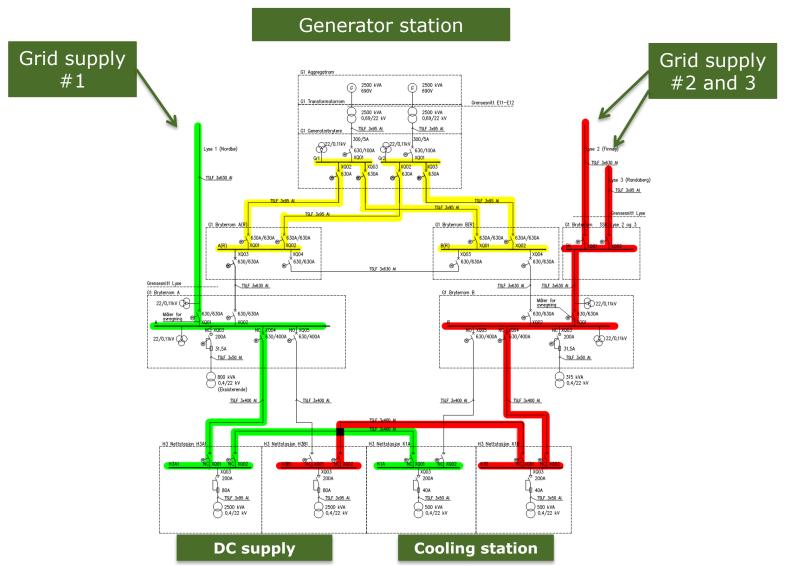
- Uptime institute Tier III
 - Utilising Uptime certified personnel in design team
 - 3'rd party review performed
 - Conferences directly with Uptime Institute personnel during process («certification ready»)
 - All items in compliance with Tier III level
 - Most items in compliance with Tier IV level

- All DC specific installation of material and cabling done according to TIA 942
- Customer rooms design according to TIA 942
 - Clients may choose otherwise if required

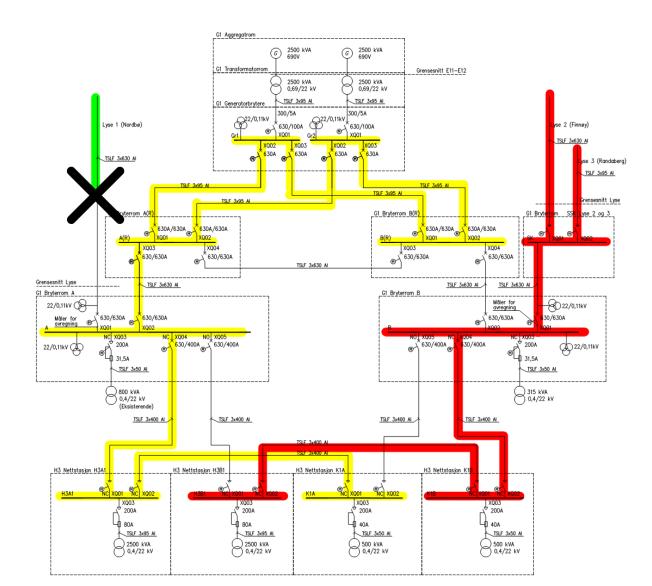
Tier III +

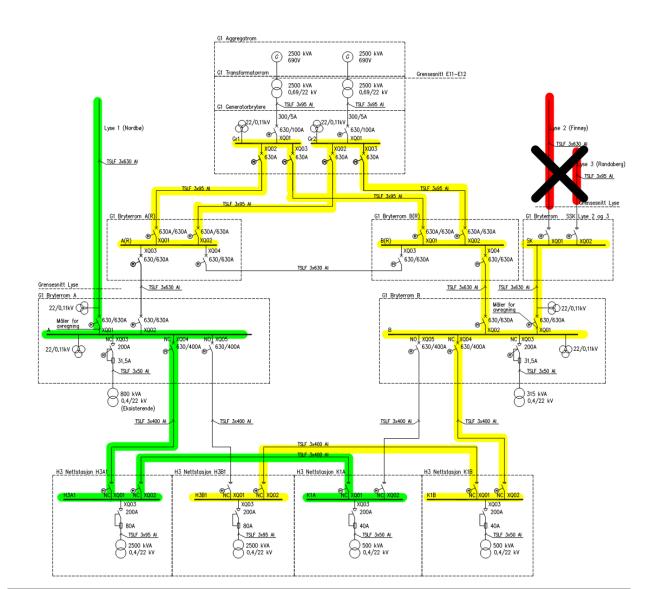
	Tier I	Tier II	Tier III	Tier IV
Number of Delivery	Only 1	Only 1	1 Active	2 Active
Paths (power and cooling)			1 Passive	
Redundancy	N	N + 1	N + 1	N + N or
				2 (N + 1)
Compartmentalization	No	No	No	Yes
Concurrently	No	No	Yes	Yes
Maintainable				
Building Type	Tenant	Tenant	Stand-alone	Stand-alone
Useable for critical	100% N	100% N	90% N	90% N
Load				
Uninterruptible Cooling	None	None	Maybe	Yes
Single points-of Failure	Many +	Many +	Some +	None +
	human error	human error	human error	human error
Theoretical availability	99,671%	99,741%	99,982%	99,995%

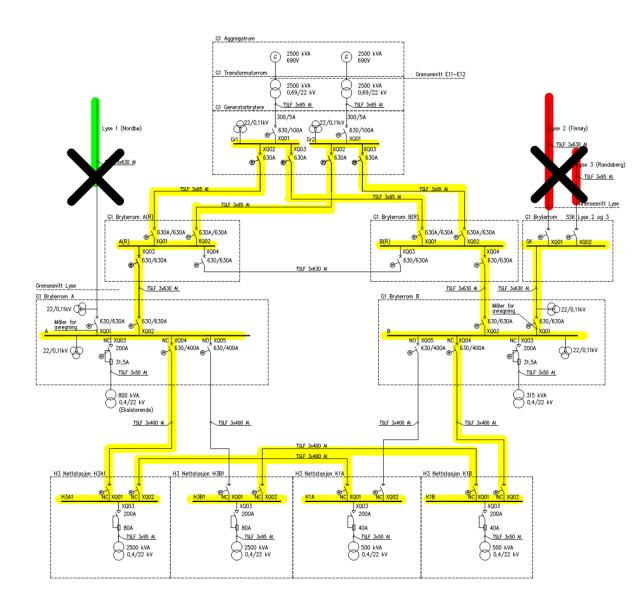
Unique power availability


- 3 independent / partly independent feeds
 - Lyse Elnett (22 kV)
 - N+2
- Underground cable feed
- Proximity power plants
- Proximity to largest reservoir
- Low prices region (NO2)
- Low cost distribution

Power availability to the site estimated to: 99,99997%


HV: A and B distribution incl. Genset


Failure on A (Grid #1 failure)


Failure on B (grid failure #2 and 3)

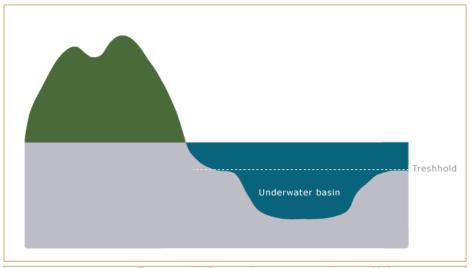
Failure on A and B

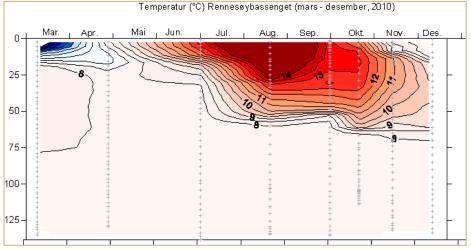
Power house

The power house

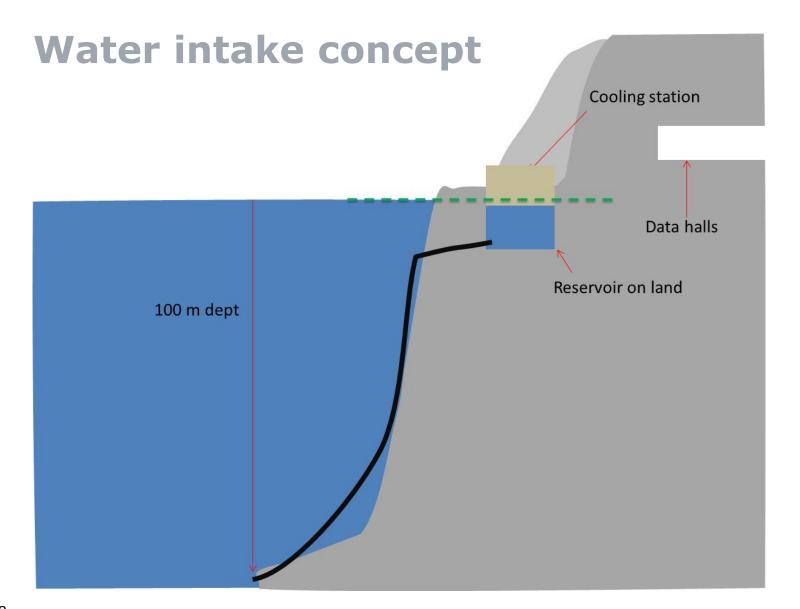
HV supply (A and B)

2,5 MVA power generators in N+1 configuration


HV Control switching



Unique free cooling from the fjord

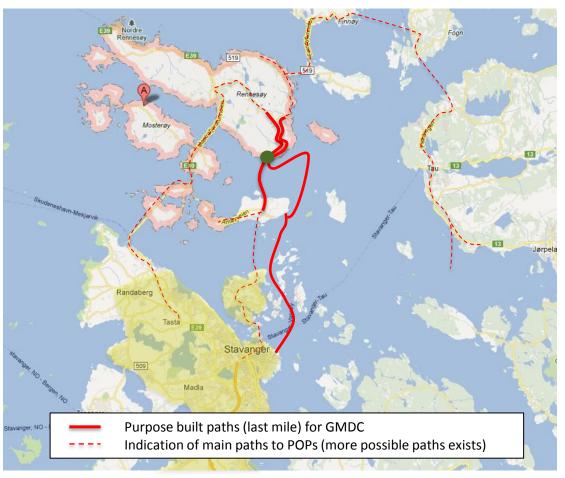

- A threshold fjord
 - Large underwater basin
 - Several cubic kilometers of water

- 8°C (46 F) water available year round.
 - Water inlet at 100 m+ depth just outside the facility
 - Securing ample access of 8°C (46 F).

Cooling station

From the cooling station (B-side)

From the cooling station (A-side)


High power density and efficiency

- The cooling system allows for high power density
 - Up to 6 kW/m² as standardised solutions
 - Above 6 kW/m² as bespoke solutions
- Price efficiency for increased power density
- World class PUE

Communication – fiber path last km's

Carrier neutrality

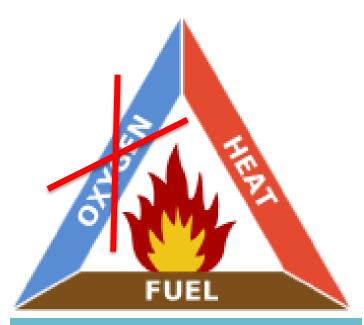
- Lyse / Altibox
- Telenor
- TDC
- Broadnet
- Others

Good connectivity

- High capacity fiber to Oslo
- Low latency (2,8 and 3,6 ms)
- Good connectivity across the North Sea
- New connectivity to Denmark in 2014.
- Dark fiber availability

Communication – rest of Europe

- Multiple paths into European markets
 - Via Oslo multiple carriers
 - Across the North Sea single carrier
 - Across to Denmark multiple carriers
- Low latency international connectivity


Destination	Latency (one way)	Comment
Oslo	3 ms	
Copenhagen	8 ms	
Stockholm	7,3 ms	
London	6.5 ms	Across North Sea
Aberdeen	4,5 ms	Across North Sea
Amsterdam	12 /13 ms	Via London/ Copenhagen
Frankfurt	15,5 ms	

Fire suppression and protection

- Use of mountain halls enables use of hypoxic air venting.
- Continuous fire suppression
 - 0₂ level reduced to about 15% (from 21%)
 - Fire can not occur since the combustions process does not get enough oxygen
 - Corresponds to an altitude of approx. 3.000 m
- Hypoxic air venting:
 - Reduces / limits smoke creation
 - Fire not possible
 - Secures continuous operation
 - No fire damages
 - No secondary extinguishing damages (corrosion, environmental damages, toxic gasses etc.)
 - No risk due to release of fire extinguishers
- Extraordinary clean air
 - Creates optimum operational environment
 - Avoiding any corrosion damages from saline air
- Continuous monitoring

The **fire triangle**;

- Without *heat*, a fire cannot begin, and it cannot continue;
- Without fuel (burning material), a fire will stop;
- Without sufficient oxygen, a fire cannot begin, and it cannot continue.

Vault security

- A former high security NATO ammunition storage (largest in northern Europe)
- Built for highest military security level
 - Protected against Electro Magnetic Pulses (EMP)
 - "Nuclear secured" facility
 - Protected against sabotage and direct attacks from the sea.
- "Best in class" data security

Security - Perimeter

- The centre is a former NATO facility built for high security
- Only one road leading in to the facility
- No other activity in the vicinity
- 24/7/365 surveillance
 - Using thermal and PTZ IP cameras
 - Cameras covering all doors and entrances
- Intelligent video analysis (IVA) is used in combination with the thermal cameras
 - The IVA software is capable of distinguishing between animals, humans and other "normal" vs. un-normal" movements and objects at the location

Security - Mountain

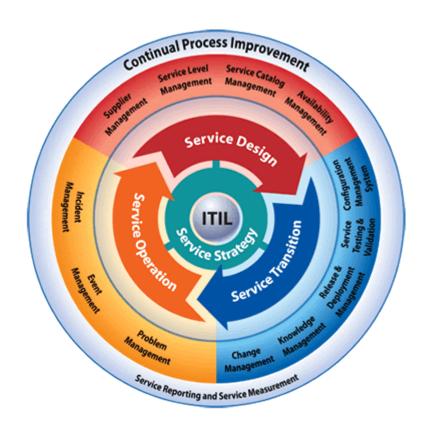
- The Mountain halls can only be entered through one entrance.
- This entrance is secured with a mantrap and biometric access control
 - Allows only one person at the time entering the facility
 - Person has to be registered in the approved access database
 - Includes weighing and stereo camera
- The Mountain halls are protected through several security zones,
 - Access to zone requires authorization
- 24/7/365 surveillance
 - Using thermal and PTZ IP cameras
 - Cameras covering all doors and entrances
 - Human recognition software

Operation and reporting

DCIM system from Schneider

- Capacity management
 - Simulation
 - Planning and optimization
 - Reporting
- Power monitoring
 - Power management
 - Billing
- Energy efficiency
 - Intelligent PUE/DCiE analytics at subsystem level
- Presentation
 - Apps available for mobile devices

 Each customer room is equiped with a display showing the current PUE and O² level


- Monthly reporting is done on agreed KPIs, such as:
 - Power usage and availability
 - Power load
 - Cooling availability
 - PUE
 - O² level
 - Temperature
 - Humidity
 - Access to room

Operation based on ITIL processes

- Service strategy
 - Service portfolio management
 - Financial planning
- Service design
 - Service Level management
 - Capacity management
 - Availability management
 - Continuity management
 - Security management
- Service transition
 - Change management
 - Asset management
 - Configuration management
 - Release management
- Service operation
 - Incident and request management
 - Event management
 - Problem management
 - Order management
 - Access management
- Continual service improvement

Thank you for your attention!

The administration building is seen in the foreground